
JOURNAL OF AEROSPACE COMPUTING, INFORMATION, AND COMMUNICATION
Vol. 5, May 2008

Real-time Obstacle Map Building with Target Tracking

Yeonsik Kang∗ , Derek S. Caveney† , and J. Karl Hedrick‡

University of California, Berkeley, Berkeley, CA, 94720, USA

DOI: 10.2514/1.29210

In this paper, a new method is proposed to build a probabilistic occupancy map for an
unmanned aerial vehicle (UAV) equipped with a forward-looking sensor, such as a laser scan-
ning sensor (known as lidar). For a UAV, target tracking as well as mapping of obstacles are
both important. Instead of using raw measurements to build a map, the proposed algorithm
uses the interacting multiple model (IMM)-based target formulation and tracking method
first to process the noisy measurement data. The state estimates and true target probabil-
ity of each point-mass target tracks are then used to build a probabilistic occupancy map.
Therefore, simultaneous tracking and mapping of both moving and stationary obstacles are
accomplished in real time. In addition, the mapping algorithm has the robustness to the noisy
sensor measurements. The obtained probabilistic occupancy map shows good agreement with
the physical layout of the obstacles in the field in simulations. This shows the potential that
the developed method can be used to help an unmanned vehicle navigate the field without a
previous database of obstacles.

I. Introduction

FOR an unmanned aerial vehicle (UAV), it is essential to be able to identify a safe path and to localize its own
position to perform a mission. Also, to perform a collision avoidance maneuver, the tracking of moving targets

is necessary. A forward-looking sensor such as a radar or laser scanning sensor (also known as lidar) can help a UAV
detect moving or stationary obstacles, especially when flying in an outdoor environment. There are many tracking
algorithms based on the Kalman filter specialized in tracking a moving target. However, it is also necessary to produce
a two-dimensional (2-D) map of stationary obstacles to plan a safe path for the UAV. The method proposed in the
present paper can achieve the tracking of both moving and stationary obstacles in a computationally efficient manner.
The proposed method uses the outputs from the point mass target-tracking algorithm to generate a map of stationary
obstacles. Therefore, the complex data association of a large set of measurements is solved only once.

In this paper, a new approach to build the probabilistic occupancy grid map based on the existing point-mass target-
tracking algorithm will be presented, assuming that the position of the vehicle is known. Probabilistic occupancy
grid mapping has been very popular in robotic navigation applications and many papers have dealt with methods to
update the known or unknown map and localize the position of the robot based on the measurements from sensors
such as sonar, lidar, or computer vision [1–6]. The map update law has been extended to filter out the measurements
associated with dynamic obstacles outlined by Hahnel et al. [7] and Biswas et al. [8]. Recently, the probabilistic

Received 11 December 2006; accepted for publication 20 March 2008. Copyright © 2008 by the American Institute of
Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition
that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923;
include the code 1542-9423/08 $10.00 in correspondence with the CCC.∗ Postdoctoral Reseracher, Department of Mechanical Engineering in University of California, Berkeley, 2162 Etcheverry Hall,
Berkeley, CA 94720, USA, yeonsikkang@gmail.com.
† Postdoctoral Researcher Department of Mechanical Engineering in University of California, Berkeley, Berkeley, CA 94720,
USA.
‡ James Marshall Wells Professor, Department of Mechanical Engineering in University of California, Berkeley, 5104 Etcheverry
Hall, Berkeley, CA 94720, USA.

120

KANG, CAVENEY, AND HEDRICK

occupancy grid map was constructed using a quadtree-based approach, which facilitates access to the information in
the map and manages the memory efficiently [9,10]. The quadtree algorithm has been extensively developed in the
application of computer graphics and image processing [11,12].

In the current paper, the Kalman filter-based interacting multiple model (IMM) technique is used as a measurement
model and the probabilistic map is built recursively. The localization of the unmanned vehicle is not addressed in
this paper since our goal is to provide a fast and robust mapping algorithm for an unmanned vehicle equipped with
a precise position sensor suite of global positioning system [GPS] and inertial navigation system (INS). Therefore,
it is assumed that the position of the vehicle can be measured or estimated. There have been numerous efforts to
localize the position of the UAV or the target relying on sensors, such as computer vision or laser scanner [5,13–16].

The IMM method was developed by the aerospace industry to track aircraft trajectories using radar mea-
surements [17]. The application of this method to the automatic track formulation problem is addressed by
Bar-Shalom [18].

In conventional mapping algorithms [1,4,5,19], noisy measurements are directly used to calculate the probability
of occupancy grids, so the effect of noise may significantly deteriorate the result. The proposed mapping algorithm
can reduce the effect of noise by setting a cutoff probability on targets to be used to populate the occupancy grid.
In addition, a fast-moving obstacle can also be detected and the position of the moving obstacle is tracked using
the Kalman-filter-based tracking algorithm. The derived recursive algorithm can be calculated fast enough to run
in real-time applications such as UAV navigation. These advantages will be explained in the following sections by
simulation results.

In Sec. II the IMM-based track formulation algorithm will be explained. In Sec. III the developed recursive map
building algorithm will be presented. In Sec. IV a practical modification on the tracking algorithm will be presented
to apply the method to the laser scanning finder type of sensor. Simulation results in 2-D cases will be presented in
Sec. V followed by conclusions in Sec. VI.

II. Interacting Multiple Model Algorithm for Obstacle Detection
This section explains the IMM-based track-formulation algorithm introduced by Bar-Shalom [18]. In this

algorithm, the true target probability (TTP) of each target can be calculated and the target with a TTP less than
a certain lower threshold will be removed. After a TTP reaches a certain upper threshold, the algorithm will declare
that an obstacle is detected. This TTP with the position estimates and estimation covariances will be used in Sec. III
to build a probabilistic occupancy map.

To associate multiple measurements on a target, the probabilistic data association filter (PDAF) is used, which is a
suboptimal Bayesian algorithm [20]. The PDAF is used to avoid the exponential growth of memory and computation
requirements of the optimal data association, which would result in an algorithm that was difficult to implement on
a fast real-time application.

The IMM algorithm is a stochastic state estimator using multiple Kalman filters to track and estimate the states
of a dynamic system. In the current paper, an IMM algorithm uses two PDAFs to detect obstacles. Each depends on
a different hypothesis but uses the same dynamics as follows

x(k + 1) = Ax(k) + Bw(k) (1)

z(k) = Cx(k) + v(k) (2)

where w(k) and v(k) denote the mutually independent Gaussian noise processes with zero mean and covariances
Q(k) and R(k) respectively. x(k) and z(k) denote the state and measurement vectors of the target as follows

x(k) = [
ξ(k), ξ̇ (k), η(k), η̇(k)

]T
(3)

z(k) = [ξ(k), η(k)]T (4)

where ξ(k) and η(k) denote the position of the target according to a Cartesian coordinate reference frame.
The details of the IMM algorithm for the obstacle detection problem are explained by Bar-Shalom [18], Bar-

Shalom et al. [20], and Kang et al. [21]. The IMM algorithm is composed of four major steps and Fig. 1 shows the
schematic of the IMM algorithm.

121

KANG, CAVENEY, AND HEDRICK

Fig. 1 Four major steps of IMM algorithm.

The two PDAFs shown in Fig. 1 are conditioned on two different events, respectively. In particular, the PDAF 0
is conditioned on the event that there is no obstacle in the area of interest while the PDAF 1 is conditioned on the
event there is an obstacle in the area of interest. These two different events differentiate the two PDAFs by the values
of detection probability PD , which is defined as the probability that the true target is detected. For PDAF 0, the PD

is set to zero as it is not possible to obtain true measurement and for PDAF 1 the PD is set to a value determined by
sensor specifications.

In the first step of the IMM method, the initial conditions for each model PDAF x̂∗
j (k − 1) and P ∗

j (k − 1), are
obtained by mixing the previous state estimates of each filter. The mixing is based on the model probability at the
previous step and the Markov transition matrix between the events on which the PDAFs are based.

In the second step, the prediction through a Kalman-filter-based PDAF is made based on the mixed estimates of
the previous iteration. The measurements validated through the validation gate are used for the innovation of the
Kalman filter. The volume of the validation gate is

V (k) = g2π |S(k)|1/2 (5)

where g is determined by the chi-square distribution depending on the gating probability PG, and S(k) denotes the
measurement covariance matrix of the Kalman filter. Therefore, only the measurements that are close enough to the
predicted measurement are associated with the estimates.

The model probability μj(k|k) of each filter is calculated recursively in the third step using the likelihood function,
which represents the sensor model. The model probability μ1(k|k) becomes the TTP of each track and the track is
removed if the TTP is below a certain lower threshold. The TTPs with position estimates and covariances of the
tracks will be used in calculating the probability of occupancy of each grid cell in Sec. III.

Finally, in the fourth step, the combined estimate and its covariances are calculated by using each filter’s updated
states, covariances, and model probabilities.

III. Probabilistic Map Building
In this section, the proposed algorithm to update the probabilistic occupancy map will be described. To use the

obstacle information extracted from the sensor measurements for path planning or obstacle avoidance, it is desired
to produce a map. In this study, we use the probabilistic occupancy grid map to represent the occupancy of the
environment as it fits very well with the developed IMM-based obstacle detection as well as popular path planning
algorithms for unmanned vehicles. In probabilistic occupancy grid mapping, the areas of interest are divided into
grid cells and the value between 0 to 1 is assigned to each grid cell, which represents the probability that the cell is

122

KANG, CAVENEY, AND HEDRICK

Fig. 2 The grid cell G and the nearby pth target.

occupied. If we want to convert these continuous values into binary values of either 0 or 1 to represent occupancy,
we may set the threshold and assign occupancy of the grid cell if the probability is higher than this threshold.

The outputs from the IMM obstacle detection algorithm are used to update the probability of the grid cell that
has nearby tracks. The necessary inputs for the developed probabilistic map update algorithm are the state estimates
with covariances and the TTP of the tracks. For the grid cell without any nearby tracking, a different update law is
developed based on Bayes rule. These two update laws will be described in subsections A and B, respectively.

A. Map Update Law with Nearby Tracking Information
The probability of occupancy of a grid cell, G, based on the cumulative sensor measurements Zk is denoted by

P(occ|Zk). The center of the grid cell G shown in Fig. 2 is denoted by (xg, yg) in Cartesian coordinates. The pth
track position is denoted by Yp = (xp, yp). Suppose that the number of the tracks which exist near the cell G at time
k is Np > 0. A track is determined to be near the cell if the closest distance to the cell is smaller than a threshold
γ . Therefore, the track farther than γ distance from the cell will not affect the probability of occupancy of the cell.
In this paper, the square root of the maximum eigenvalue of S(k|k) is used as γ since the track that is not located
within this box has only a small portion of its distribution in the box. In the IMM algorithm, only the measurements
validated through the validation gate, V (k) are associated to update each track, therefore, the Zk used to update a
grid cell denotes the cumulative “validated” measurements of the nearby tracks.

In this paper, two basic assumptions are made to derive P(occ|Zk). The first assumption is that the probability of
the occupancy of a cell is independent from the occupancy of the other cells. This assumption may not be realistic
because outdoor environments are usually composed of larger objects and the knowledge of occupancy of one cell
may help increase the efficiency of the algorithm on the neighboring cells. However, the probability of occupancy
of a cell is calculated independently from other cells, which is common in many map update algorithms [6]. The
second assumption is that each cell is occupied by only a single target track. There is a chance that the cell may be
occupied by many target tracks, but in this paper, we will consider it as not possible. This assumption will not only
simplify the derivation, but also make the algorithm more conservative. This second assumption can be written as

occ =
Np⋃
p=1

occp, occp ∩ occq = φ if p �= q (6)

where occp denotes the event that the pth track exists and occupies the grid cell G. The event is defined by

occp = [
(xp, yp)|(xp, yp) ∈ G, m1p

]
(7)

123

KANG, CAVENEY, AND HEDRICK

where m1p denotes the event that the pth is a true target. Following these two assumptions, the probability of the
occupancy of G is calculated by

P(occ|Zk) = P

⎛
⎝

Np⋃
p=1

occp|Zk

⎞
⎠

=
Np∑
p=1

P(occp|Zk)

=
Np∑
p=1

PYp

[
(xp, yp) ∈ G, m1p|Zk

]
(8)

The second equality holds because of the assumption given by Eq. (6). The third equality is from the definition
of the event occp. The joint density function in the third line of Eq. (8) is not easy to calculate directly. Bayes rule
enables us to write this density function in an easier form to calculate

PYp

[
(xp, yp) ∈ G, m1p|Zk

] = PYp

[
(xp, yp) ∈ G|m1p, Zk

]
P(m1p|Zk)

=
∫

G

N (Yp; Ŷ1p; Ŝp)μ1p(k|k) (9)

Conditioned on the event that the track is originating from a real obstacle, we can represent its distribution by using
a Gaussian normal distribution with its mean and variance calculated from the Kalman filter estimates. The Gaussian
distribution of the Yp has its mean as Ŷ1p = Cx̂1p(k|k) and covariance as Ŝp = CP1pCT . The P(m1p|Zk) is exactly
the definition of the TTP, μ1p(k|k). The estimates we need from the IMM algorithm to update the probabilistic
occupancy grid map are the Ŷp, P1p taken from the state and state covariance estimates, and the TTP μ1p(k|k). The
bivariate Gaussian distribution of N (Yp; Ŷ1p; Ŝp) can be integrated over the grid cell numerically. The numerical
integration procedure of the bivariate distribution is described by Genz [22].

The second assumption given by Eq. (6) greatly simplifies the derivation of the probability of occupancy. However,
this assumption is violated in many cases and the resulting P(occ|Zk) is overestimated because the probability
P(occp ∩ occq) is not zero generally. Although the assumption may be violated often, the overestimation of the
probability of occupancy is not a significant problem, in fact it gives us a margin of safety.

Finally the update law is derived as

P(occ|Zk) =
Np∑
p=1

∫
G

N (Yp; Ŷ1p; Ŝp)μ1p(k|k) (10)

which is intuitive because it is calculated by the summation of integrations of all the targets’ Gaussian probability
distributions weighted by their TTP.

The map update law described in this subsection is the case when Np > 0. If Np = 0, no update will be made by
the above law. The update law corresponding to such a case will be described in the next subsection.

B. Map Update Law without Nearby Tracking Information
The map update in the previous subsection is done using the validated measurements of the grid cell Zk . However,

if there is no track near the grid cell, there is no validated measurement around the grid cell. Even though, the
observation of “empty” validated measurements can be used to develop map update law.

124

KANG, CAVENEY, AND HEDRICK

The update law is derived using Bayes rule by

P(occ|Zk) = P(occ|Z(k) = φ, Zk−1) = P(Z(k) = φ |occ, Zk−1)P (occ|Zk−1)

P (Z(k) = φ |Zk−1)

= P(Z(k) = φ |occ)P (occ|Zk−1)

P (Z(k) = φ |occ)P (occ|Zk−1) + P(Z(k) = φ |unocc)P (unocc|Zk−1)

= (1 − P 1
D)P (occ|Zk−1)

(1 − P 1
D)P (occ|Zk−1) + (1 − P 0

D)(1 − P(occ|Zk−1))
(11)

where P 1
D is the detection probability, P 0

D is the probability of false detection, and φ denotes the empty set. These
variables are characteristics of the sensor type. The first line of Eq. (11) is the result of Bayes rule. The second line
uses the assumption that the conditional probability distribution of measurement at k given the occupancy of the grid
cell is independent from the previous measurement. This is a common assumption made in the occupancy grid map
approach such as by Thrun [6]. Also in the second line of Eq. (11), the total probability theorem is used to expand
P(Z(k) = φ |Zk−1). In the third line, an approximation is made to consider that the validated measurement Z(k) is
the same as the true measurement. Although they are not exactly same, the possibility of an incorrect measurement
being validated is neglected because it is very small. In the third line of Eq. (11), P 1

D represents the probability
of getting a correct measurement of the grid cell which is occupied. This is P(Z(k) �= φ |occ) by definition. P 0

D

represents the probability that there is a true sensor return by the unoccupied grid cell, which is P(Z(k) �= φ |unocc)
and should be zero or very small. If P 1

D is high, then the algorithm tends to trust the sensor measurement, whereas
if P 1

D is low, then the algorithm is reluctant to increase TTP by a single measurement around the grid cell.

IV. Implementation of the Algorithm
The overall structure of the algorithm is shown in Fig. 3. First the sensor measurements are fed to the IMM-based

obstacle detection algorithm. The algorithm outputs the point-mass state estimates, covariances, and TTP of the
existing tracks. Also from the sensor measurements, we estimate the sensor’s field of view and collect the grid cells
that are within the sensor’s field of view. The probabilities of occupancy of the grid cells are updated by the recursive
map updating algorithm based on the outputs from IMM-based point-mass target tracking algorithm.

The map update is performed when the grid cell G is visible from the sensor. A specific type of sensor of interest
in this paper is the lidar. Therefore, a lidar model is developed which mimics the physics of the real lidar. The lidar
model does an intersection test between the sensor ray and the edge of an obstacle and if there is an intersection, it
returns the distance and the relative angle of the intersecting point from the unmanned aircraft mixed with simulated
random clutter and measurement noise. Each time step, the cells that are visible according to the position of the
sensor and sensor specifications are collected and updated by the law described in Sec. III. Since it takes a few steps
for the obstacle detection algorithm to initiate a new track or to terminate a track that is no longer in the sensor field
of view, we give a margin when selecting the updated grid cells as in Fig. 4.

The tracking of a large obstacle induces the drifting of the tracks on the obstacle’s surface and this is caused
by movement of the reflection points as the unmanned vehicle moves. As a result, some of the tracks merge to the
same spot of the surface and become redundant tracks. To eliminate redundant tracks around the same position,
we used a routine that eliminates a track that is too close to another track which was generated earlier than itself.

Fig. 3 Structure of the algorithm.

125

KANG, CAVENEY, AND HEDRICK

Fig. 4 The grid cells in the update region.

This routine avoids keeping too many tracks near the same position, therefore we can manage the number of the
tracks we maintain. The lidar measurements from a large obstacle are difficult to associate since it is not guaranteed
that measurements can be repeatedly obtained from the same spot. It is also possible that several measurements are
associated with a single track, causing the size of the state covariance matrix to increase. In this paper, in addition
to the existing measurement validation gate, association by a distance limit is applied, which limits the association
of measurements to those within a certain distance of the track. This additional association limit lets us instantiate a
new track near the grid cell from which the track drifted away, thereby maintaining good distribution of the tracks to
represent the shape of the obstacle in the occupancy grid map. The association limits should be less than the size of
the occupancy grid cell because of the resolution problem. Since we use the quantized map based on the occupancy
grid, the distribution of the point-mass target tracks are important to represent a continuous probability distribution
in a quantized map. In particular, if the estimated position of the obstacle is on the boundary of two grid cells, both
of the cells should be declared to be occupied to prevent collision. However, if there is only one target track on the
edge of two cells, two cells can have a probability of occupancy of 0.5 each at most. This is undesirable. In order to
eliminate this possibility, at least a couple of target tracks should be maintained within one grid cell on the surface
of a large obstacle. This was accomplished by putting association limits to the validation gate V (k) and limiting the
maximum size of the gate to the association limit. The effect of the association limit is discussed in Sec. V.

V. Simulation Results
Table 1 gives the specifications of the sensor model. Since a UAV is considered in a noisy outdoor environment,

the specifications used in Table 1 may show larger standard deviation and heavier clutter noise than the specifications
of a standard lidar. The sensor model scans in a 2-D horizontal plane, which is common in many lidar applications. In
Fig. 5, the obstacle layouts and the path of the unmanned vehicle are plotted. The thick solid line shows the trajectory
of the UAV and the thin dotted line shows the trajectory of the moving target. The velocity of the UAV in simulation
is around 7–10 m/s following the path in clockwise direction. The velocity of the moving target is around 10 m/s.
The obstacle layout used in the simulation is provided by the NASA Ames Research Center.

A. IMM Obstacle Detection Result
In this subsection, the outputs from the IMM-based obstacle detection algorithms are presented to show the

performance and behavior of the algorithm using the lidar sensor model. The parameters for the IMM-based obstacle

126

KANG, CAVENEY, AND HEDRICK

Table 1 Lidar specification in Matlab simulation

Maximum range 100 m
Horizontal field of view 180◦
Horizontal resolution 1◦
Update rate 10 Hz
Clutter noise 2.5 per scan on average
Measurement noise Gaussian distribution with 0 mean

and 50 mm standard deviation

Fig. 5 The simulation trajectory of the vehicle (dots) and obstacle layouts (lines).

detection algorithm are as shown in Table 2. The P 0
D should be zero in theory but, to avoid any divide by zero error, it

is set to a small value. A track is terminated after its TTP μ1(k) reaches the lower threshold of termination probability
of 0.2. In Fig. 6, tracking results in the middle of the flight path are shown. The solid lines represent the cross sections
of the obstacles in the field. The thick circles represent the tracks. The dotted lines represent the sensor beams. The
position of the helicopter is represented by thin circles with its heading angle represented by a short line. It is shown
that several tracks are generated only on the surface of the real obstacles, although there is clutter noise mixed in the
measurements. In Fig. 6a, the algorithm ran with 3 m association limits mentioned in Sec. IV. With this association
limit, the tracks are distributed evenly on the surface of the large obstacle. In Fig. 6b, the algorithm ran without the
association limit. In Fig. 6b the tracks on the front wall drifted to the center, although they had been located evenly
when they were generated. At this moment it was observed that the measurement covariances of the tracks on the
front wall increased. Accordingly, the measurement gate size also increased and the measurements at the edge of the
wall were associated to the tracks which drifted toward the center of the wall. Therefore, although there were only
three tracks on the surface of the wall in front of the UAV’s path, no more tracks were generated.

With the association limit, even though the tracks drifts toward the center, new tracks are generated at the edge
of the wall since its measurements are not associated with the old tracks. Therefore, cells on the surface of the wall
can maintain a high probability of occupancy. The number of the total tracks existing in Fig. 1a is 53, while there are
only 12 tracks in Fig. 1b. Therefore, the obstacle layouts can be represented better with association limits.

127

KANG, CAVENEY, AND HEDRICK

Table 2 IMM-based obstacle detection algorithm parameters

P 0
D , P 1

D 0.01, 0.9
Track fusion distance 1 m
Association limit 3 m
The probability threshold of track termination 0.2

Fig. 6 The tracks generated by IMM-based obstacle detection algorithm: (a) with association limit and (b) without
association limit.

Fig. 7 Tracking of moving target and stationary obstacles: (a) at 24 s and (b) at 34 s.

128

KANG, CAVENEY, AND HEDRICK

Fig. 8 The probabilistic occupancy grid map: (a) after 24 s and (b) after 34 s.

Fig. 9 Final probabilistic occupancy grid map result after 60 s run.

129

KANG, CAVENEY, AND HEDRICK

Fig. 10 (a) Image of the Moffett Field and (b) Pre-populated Quadtree.

In Figs. 7a and b, the tracking results at 24 and 34 s are plotted when the moving target is detected by the lidar.
The trajectory of the moving target is plotted by a dashed line and raw sensor measurements with clutter noise are
plotted by stars. In Fig. 7a the moving target is located on the left side of the UAV and in Fig. 7(b) the moving
target is located on the right side of the UAV. In this result, it is shown that both the moving target and the stationary
obstacles are detected and tracked by the IMM-based target-tracking algorithm.

130

KANG, CAVENEY, AND HEDRICK

B. Probabilistic Occupancy Grid Cell Updating
The occupancy grid maps are updated using the outputs from the IMM-based obstacle detection algorithm. The

size of each grid cell in the map is 5 × 5 m2 in simulation. In Figs. 8a and b, the probabilistic occupancy grid map
results at the same moment with Fig. 7 are plotted. The dark color on the grid cell represents the high probability
of occupancy, and the dots represent the UAV trajectory. The cells occupied by both the moving target and the
stationary obstacles have high probability of occupancy. Since moving target occupies a cell for a while and moves
to the neighboring cells, the probability of the cell currently occupying the moving target diminishes after the target
advances to the neighboring cell. The final result after the vehicle finishes the whole flight path is shown in Fig. 9.
The resulting probabilistic occupancy grid map shows close agreement with the physical layout of the obstacles in
the field. The association of the raw measurements filtered out the clutter and measurement noise successfully.

C. Pre-populated Binary Occupancy Grid Representation
In this subsection, a probabilistic threshold of 0.5 is set and the continuous probability is quantized into binary

occupancy of each grid cell. The binary occupancy value is more convenient to be managed in the onboard computer
using algorithms such as quadtree [9,10], which is a tree-type data structure in which the cells with the same
occupancy are merged into one cell. The simulation results in subsection B assumes that there is no previous
knowledge about the field where the UAV will fly through. At the present time, geographical information is available
through satellite images or satellite radar measurements. In many cases, these data are precise and hold a lot of
geographical information. However, it is also possible that the data are outdated or some of the information is
neglected through the data process. In the simulation results to follow, it is assumed that the map is prepopulated
using previous information about the area. However, it does not contain the information about the building that was
recently built in the area. In Fig. 10a, the picture of the Moffett Field is presented. In Fig. 10b, the database of the
buildings in the field is used to prepopulate the map and the black cells denote the occupied grid cells while the
yellow cells denote the empty cells. The size of the map is 1280 m2 and each cell is 5 m2.

Fig. 11 Map after UAV sensor sweeps.

131

KANG, CAVENEY, AND HEDRICK

Fig. 12 Map after the flight of UAV.

In Fig. 11, a UAV equipped with a lidar sensor flies through a trajectory that is denoted by the stars. This trajectory
is generated by connecting several way points using cubic-spline curves. The cells with probability of occupancy
above the pre-determined threshold of 0.5 are denoted by red cells. Owing to sensor noise, sometimes, the adjacent
cells are also declared to be occupied.

In Fig. 12, the UAV trajectory almost encircles the two buildings in the center and the final map acquired through
this maneuver is plotted. The map shows the shape of the two buildings in the center of the map very well and
indicates the potential of the algorithm to be used for real-time path planning of a UAV.

VI. Conclusion
In this study, a new method for building probabilistic occupancy maps is developed and its performance is evaluated

in a simulation with realistic sensor models and real obstacle layouts in a 2-D plane. The algorithm developed here
assumes that the position of the vehicle is known and focuses on the filtering of clutter and measurement noise using
the existing machinery of an IMM algorithm for target tracking and formation. The outputs from the filters are used to
produce a high-quality probabilistic occupancy grid map of obstacles. As the IMM algorithm uses Kalman filters that
assume point-mass type obstacles, some practical ideas are implemented to handle the case with large-scale obstacles.
In the simulation results, it is shown that the shape of the stationary large obstacles can be represented successfully
on the resulting probabilistic occupancy map by using an algorithm that assumes point-mass type obstacles. The
developed method also filters out sensor noise and outputs a probabilistic map of stationary outdoor obstacles that
matches very well with the physical layout of the obstacles in the field. In case there is a moving obstacle, the obstacle
detection algorithm based on Kalman filter estimates the position of the moving obstacle precisely. This is one of the
advantages of the proposed algorithm, which can accurately estimate the position of the moving target and also map
the stationary obstacles on the map. When a lidar is used to detect large obstacles, the targets being tracked by the
estimator show drifting motion on the surface of the large obstacle. This is an inherent problem of the lidar since the

132

KANG, CAVENEY, AND HEDRICK

consecutive measurements are not guaranteed to originate from the same spot on the obstacle’s surface. However,
the simulation results showed that the effect of drift on the map is unnoticeable. The outcome from the mapping
algorithm will be very useful in generating a safe path for UAVs.

Acknowledgments
The authors thank the researchers in NASA Ames Research Center and acknowledge the financial support of

NASA STTR Program, Contract No. NNA04AA63C.

References
[1] Martin, M., and Moravec, H., “Robot Evidence Grids,” Technical Report CMU-RI-TR-96-06, Robotics Institute, Carnegie

Mellon University, 1996.
[2] Schultz, A., and Adams, W., “Continuous Localization Using Evidence Grids,” Proceedings of the 1998 IEEE International

Conference on Robotics and Automation, IEEE, Vol. 4, 1998, pp. 16–20.
[3] Yamaguchi, B., “A Frontier-based Approach for Autonomous Exploration,” Proceedings of the IEEE International

Symposium on Computational Intelligence in Robotics and Automation, IEEE, 1997, pp. 146–151.
[4] Thrun, S., “Learning Metric-Topological Maps for Indoor Mobile Robot Navigation,” Artificial Intelligence, Vol. 99, No. 1,

1998, pp. 21–71.
doi: 10.1016/S0004-3702(97)00078-7

[5] Thrun, S., Fox, D., and Burgard, W., “A Probabilistic Approach to Concurrent Mapping and Localization for Mobile
Robots,” Machine Learning, Vol. 31, No. 1–3, 1998, pp. 29–53, also appeared in Autonomous Robots, Vol. 5, No. 3–4, 1998,
pp. 253–271 (joint issue).
doi: 10.1023/A:1007436523611

[6] Thrun, S., “Learning Occupancy Grid Maps with Forward Sensor Models,” Autonomous Robots, Vol. 15, No. 111-127,
2003, pp. 111–127.

[7] Hahnel, D., Trievel, R., Burgard, W., and Thrun, S., “Map Building with Mobile Robots in Dynamic Environments,”
Proceedings of the IEEE International Conference on Robotics and Automation, IEEE, Vol. 2, 2003, pp. 14–19.

[8] Biswas, R., Limketkai, B., Sanner, S., and Thrun, S., “Towards Object Mapping in Dynamic Environments with
Mobile Robots,” Proceedings of the Conference on Intelligent Robots and Systems (IROS), IEEE, Vol. 1, No. 30, 2002,
pp. 1014–1019.

[9] Frisken, S. F., and Perry, R. N., “Simple and Efficient Traversal Methods for Quadtrees and Octrees,” Journal of Graphics
Tools, Vol. 7, No. 3, 2002, pp. 1–11.

[10] Kraetzschmar, G. K., Gassull, G. P., and Uhl, K., “Probabilistic Quadtrees for Variable-resolution Mapping of Large
Environments,” Proceedings of the 5th IFAC/EURON Synposium on Intelligent Autonomous Vehicles, edited by M.I. Ribeiro
and J. Santos Vicor.

[11] Samet, H., “The Quadtree and Related Hierarchical Data Structures,” ACM Computer Survey, Vol. 16, No. 2, 1984,
pp. 187–260.
doi: 10.1145/356924.356930

[12] Samet, H., “Spatial Data Structures” Modern Database Systems, The Object Model, Interoperability and Beyond, edited by
W. Kim, ACM Press and Addison-Wesley, New York, 1995, pp. 361–385.

[13] Kim, J.-H., and Sukkarieh, S., “Airborne Simultaneous Localisation and Map Building,” Proceedings of IEEE International
Conference on Robotics and Automation, IEEE, Vol. 1, No. 14–19, 2003, pp. 406– 411.

[14] Williams, S. B., Dissanayake, G., and Durrant-Whyte, H., “An Efficient Approach to the Simultaneous Localisation and
Mapping Problem,” Proceedings of IEEE International Conference on Robotics and Automation, Vol. 1, No. 11–15, 2002,
pp. 406–411.

[15] Campbell, M., and Wheeler, M., “A Vision Based Geolocation Tracking System for UAV’s,” Proceedings of AIAA Guidance,
Navigation, and Control Conference and Exhibit, 2006.

[16] Redding, J., Mclain, T. W., Beard, R. W., and Taylor, C., “A Vision Based Target Localization from a Fixed-wing Miniature
Air Vehicle,” Proceedings of American Control Conference, 2006, pp. 2862–2867.

[17] Houles,A., and Bar-Shalom,Y., “Multisensor Tracking of a Maneuvering Target in Clutter,” IEEE Transactions on Aerospace
and Electronic Systems, IEEE, Vol. AES-25, No. 2, March 1989, pp. 176–189.

[18] Bar-Shalom, Y., ed. Multitarget-Multisensor Tracking: Advanced Applications, Artech House, Inc., Norwood, MA, 1995,
ISBN 0-89006-377-X.

[19] Miller, J. R., andAmidi, O., “3-D Site Mapping with the CMUAutonomous Helicopter,” Proceedings of the 5th International
Conference on Intelligent Autonomous Systems (IAS-5), 1998.

133

http://dx.doi.org/10.1016/S0004-3702(97)00078-7
http://dx.doi.org/10.1023/A:1007436523611
http://dx.doi.org/10.1145/356924.356930

KANG, CAVENEY, AND HEDRICK

[20] Bar-shalom, Y., Chang, K. C., and Blom, H. A. P., “Automatic Track Formation in Cluter with a Recursive Algorithm,”
IEEE Proceedings on Decision and Control, IEEE, Vol. 2, December 1989, pp. 1402–1408.

[21] Kang, Y., Caveney, D., and Hedrick, J. K., “Performance Analysis of an IMM-based Obstacle Detection Algorithm,”
Proceedings of ASME International Mechanical Engineering Conference and RD&D Expo, Anaheim, American Society of
Mechanical Engineering, 2004.

[22] Genz, A., “Numerical Computation of Rectangular Bivariate and Trivariate Normal and t Probabilities,” Statistics and
Computing, Vol. 14, No. 3, 2004, pp. 251–260.
doi: 10.1023/B:STCO.0000035304.20635.31

Roy Sterritt
Associate Editor

134

http://dx.doi.org/10.1023/B:STCO.0000035304.20635.31

